Skip to content

1. MongoDB开发规范

(1)命名原则。数据库、集合命名需要简单易懂,数据库名使用小写字符,集合名称使用统一命名风格,可以统一大小写或使用驼峰式命名。数据库名和集合名称均不能超过64个字符。

(2)集合设计。对少量数据的包含关系,使用嵌套模式有利于读性能和保证原子性的写入。对于复杂的关联关系,以及后期可能发生演进变化的情况,建议使用引用模式。

(3)文档设计。避免使用大文档,MongoDB的文档最大不能超过16MB。如果使用了内嵌的数组对象或子文档,应该保证内嵌数据不会无限制地增长。在文档结构上,尽可能减少字段名的长度,MongoDB会保存文档中的字段名,因此字段名称会影响整个集合的大小以及内存的需求。一般建议将字段名称控制在32个字符以内。

(4)索引设计。在必要时使用索引加速查询。避免建立过多的索引,单个集合建议不超过10个索引。MongoDB对集合的写入操作很可能也会触发索引的写入,从而触发更多的I/O操作。无效的索引会导致内存空间的浪费,因此有必要对索引进行审视,及时清理不使用或不合理的索引。遵循索引优化原则,如覆盖索引、优先前缀匹配等,使用explain命令分析索引性能。

(5)分片设计。对可能出现快速增长或读写压力较大的业务表考虑分片。分片键的设计满足均衡分布的目标,业务上尽量避免广播查询。应尽早确定分片策略,最好在集合达到256GB之前就进行分片。如果集合中存在唯一性索引,则应该确保该索引覆盖分片键,避免冲突。为了降低风险,单个分片的数据集合大小建议不超过2TB。

(6)升级设计。应用上需支持对旧版本数据的兼容性,在添加唯一性约束索引之前,对数据表进行检查并及时清理冗余的数据。新增、修改数据库对象等操作需要经过评审,并保持对数据字典进行更新。

(7)考虑数据老化问题,要及时清理无效、过期的数据,优先考虑为系统日志、历史数据表添加合理的老化策略。

(8)数据一致性方面,非关键业务使用默认的WriteConcern:1(更高性能写入);对于关键业务类,使用WriteConcern:majority保证一致性(性能下降)。如果业务上严格不允许脏读,则使用ReadConcern:majority选项。

(9)使用update、findAndModify对数据进行修改时,如果设置了upsert:true,则必须使用唯一性索引避免产生重复数据。

(10)业务上尽量避免短连接,使用官方最新驱动的连接池实现,控制客户端连接池的大小,最大值建议不超过200。

(11)对大量数据写入使用Bulk Write批量化API,建议使用无序批次更新。

(12)优先使用单文档事务保证原子性,如果需要使用多文档事务,则必须保证事务尽可能小,一个事务的执行时间最长不能超过60s。

(13)在条件允许的情况下,利用读写分离降低主节点压力。对于一些统计分析类的查询操作,可优先从节点上执行。

(14)考虑业务数据的隔离,例如将配置数据、历史数据存放到不同的数据库中。微服务之间使用单独的数据库,尽量避免跨库访问。

(15)维护数据字典文档并保持更新,提前按不同的业务进行数据容量的规划。

2. MongoDB数据建模案例分析

2.1 朋友圈评论内容管理

需求

社交类的APP需求,一般都会引入“朋友圈”功能,这个产品特性有一个非常重要的功能就是评论体系。

先整理下需求:

  • 这个APP希望点赞和评论信息都要包含头像信息:

  • 数据查询则相对简单:

建模

不好的设计

跟据上面的内容,先来一个非常非常"朴素"的设计:

json
{
  "_id": 41,
  "username": "小白",
  "uid": "100000",
  "headurl": "http://xxx.yyy.cnd.com/123456ABCDE",
  "praise_list": [
    "100010",
    "100011",
    "100012"
  ],
  "praise_ref_obj": {
    "100010": {
      "username": "小一",
      "headurl": "http://xxx.yyy.cnd.com/8087041AAA",
      "uid": "100010"
    },
    "100011": {
      "username": "mayun",
      "headurl": "http://xxx.yyy.cnd.com/8087041AAB",
      "uid": "100011"
    },
    "100012": {
      "username": "penglei",
      "headurl": "http://xxx.yyy.cnd.com/809999041AAA",
      "uid": "100012"
    }
  },
  "comment_list": [
    "100013",
    "100014"
  ],
  "comment_ref_obj": {
    "100013": {
      "username": "小二",
      "headurl": "http://xxx.yyy.cnd.com/80232041AAA",
      "uid": "100013",
      "msg": "good"
    },
    "100014": {
      "username": "小三",
      "headurl": "http://xxx.yyy.cnd.com/11117041AAB",
      "uid": "100014",
      "msg": "bad"
    }
  }
}

可以看到,comment_ref_obj与praise_ref_obj两个字段,有非常重的关系型数据库痕迹,猜测,这个系统之前应该是放在了普通的关系型数据库上,或者设计者被关系型数据库的影响较深。而在MongoDB这种文档型数据库里,实际上是没有必要这样去设计,这种建模只造成了多于的数据冗余。

另外一个问题是,url占用了非常多的信息空间,这点在压测的时候会有体现,带宽会过早的成为瓶颈。同样username信息也是如此,此类信息相对来说是全局稳定的,基本不会做变化。并且这类信息跟随评论一起在整个APP中流转,也无法处理”用户名修改“的需求。

根据这几个问题,重新做了优化的设计建议。

推荐的设计

json
{
  "_id": 41,
  "uid": "100000",
  "praise_uid_list": [
    "100010",
    "100011",
    "100012"
  ],
  "comment_msg_list": [
    {
      "100013": "good"
    },
    {
      "100014": "bad"
    }
  ]
}

对比可以看到,整个结构要小了几个数量级,并且可以发现url,usrname信息都全部不见了。那这样的需求应该如何去实现呢?

从业务抽象上来说,url,username这类信息实际上是非常稳定的,不会发生特别大的频繁变化。并且这两类信息实际上都应该是跟uid绑定的,每个uid含有指定的url,username,是最简单的key,value模型。所以,这类信息非常适合做一层缓存加速读取查询。

进一步的,每个人的好友基本上是有限的,头像,用户名等信息,甚至可以在APP层面进行缓存,也不会消耗移动端过多容量。但是反过来看,每次都到后段去读取,不但浪费了移动端的流量带宽,也加剧了电量消耗。

总结

MongoDB的文档模型固然强大,但绝对不是等同于关系型数据库的粗暴聚合,而是要考虑需求和业务,合理的设计。有些人在设计时,也会被文档模型误导,三七二十一一股脑的把信息塞到一个文档中,反而最后会带来各种使用问题。

2.2 多列数据结构

需求

需求是基于电影票售卖的不同渠道价格存储。某一个场次的电影,不同的销售渠道对应不同的价格。整理需求为:

  • 数据字段:

  • 业务查询有两种:

建模

不好的模型设计

我们先来看其中一种典型的不好建模设计:

json
{
  "scheduleId": "0001",
  "movie": "你的名字",
  "price": {
    "gewala": 30,
    "maoyan": 50,
    "taopiao": 20
  }
}

数据表达上基本没有字段冗余,非常紧凑。再来看业务查询能力:

  1. 根据电影场次,查询某一个渠道的价格;

    • 建立createIndex({scheduleId:1, movie:1})索引,虽然对price来说没有创建索引优化,但通过前面两个维度,已经可以定位到唯一的文档,查询效率上来说尚可;
  2. 根据渠道信息,查询对应的所有场次信息;

    • 为了优化这种查询,需要对每个渠道分别建立索引,例如:
      • createIndex({"price.gewala":1})
      • createIndex({"price.maoyan":1})
      • createIndex({"price.taopiao":1})
    • 但渠道会经常变化,并且为了支持此类查询,肯能需要创建几十个索引,对维护来说简直就是噩梦;

此设计行不通,否决。

一般般的设计

json
{
  "scheduleId": "0001",
  "movie": "你的名字",
  "channel": "gewala",
  "price": 30
}
 
{
  "scheduleId": "0001",
  "movie": "你的名字",
  "channel": "maoyan",
  "price": 50
}
 
{
  "scheduleId": "0001",
  "movie": "你的名字",
  "channel": "taopiao",
  "price": 20
}

与上面的方案相比,把整个存储对象结构进行了平铺展开,变成了一种表结构,传统的关系数据库多数采用这种类型的方案。信息表达上,把一个对象按照渠道维度拆成多个,其他的字段进行了冗余存储。如果业务需求再复杂点,造成的信息冗余膨胀非常巨大。膨胀后带来的副作用会有磁盘空间占用上升,内存命中率降低等缺点。对查询的处理呢:

  1. 根据电影场次,查询某一个渠道的价格;
    • 建立createIndex({scheduleId:1, movie:1, channel:1})索引;
  2. 根据渠道信息,查询对应的所有场次信息;
    • 建立createIndex({channel:1})索引;

更进一步的优化呢?

合理的设计

json
{
  "scheduleId": "0001",
  "movie": "你的名字",
  "provider": [
    {
      "channel": "gewala",
      "price": 30
    },
    {
      "channel": "maoyan",
      "price": 50
    },
    {
      "channel": "taopiao",
      "price": 20
    }
  ]
}

这里使用了在MongoDB建模中非常容易忽略的结构——”数组“。查询方面的处理,是可以建立Multikey Index索引

  1. 根据电影场次,查询某一个渠道的价格;
    • 建立createIndex({scheduleId:1, movie:1, "provider.channel":1})索引;
  2. 根据渠道信息,查询对应的所有场次信息;
    • 建立createIndex({"provider.channel":1})索引;

总结

这个案例并不复杂,需求也很清晰,但确实非常典型的MongoDB建模设计,开发人员在进行建模设计时经常也会受传统数据库的思路影响,沿用之前的思维惯性,而忽略了“文档”的价值。

2.3 物联网时序数据建模

本案例非常适合与IoT场景的数据采集,结合MongoDB的Sharding能力,文档数据结构等优点,可以非常好的解决物联网使用场景。

需求

案例背景是来自真实的业务,美国州际公路的流量统计。数据库需要提供的能力:

  • 存储事件数据

  • 提供分析查询能力

  • 理想的平衡点:

    • 内存使用
    • 写入性能
    • 读取分析性能
  • 可以部署在常见的硬件平台上

建模

每个事件用一个独立的文档存储

shell
{
    segId: "I80_mile23",
    speed: 63,
    ts: ISODate("2013-10-16T22:07:38.000-0500")
}
  • 非常“传统”的设计思路,每个事件都会写入一条同样的信息。多少的信息,就有多少条数据,数据量增长非常快。

  • 数据采集操作全部是Insert语句;

每分钟的信息用一个独立的文档存储(存储平均值)

shell
{
    segId: "I80_mile23",
    speed_num: 18,
    speed_sum: 1134,
    ts: ISODate("2013-10-16T22:07:00.000-0500")
}
  • 对每分钟的平均速度计算非常友好(speed_sum/speed_num);
  • 数据采集操作基本是Update语句;
  • 数据精度降为一分钟;

每分钟的信息用一个独立的文档存储(秒级记录)

shell
{
    segId: "I80_mile23",
    speed: {0:63, 1:58, ... , 58:66, 59:64},
    ts: ISODate("2013-10-16T22:07:00.000-0500")
}
  • 每秒的数据都存储在一个文档中;
  • 数据采集操作基本是Update语句;

每小时的信息用一个独立的文档存储(秒级记录)

shell
{
    segId: "I80_mile23",
    speed: {0:63, 1:58, ... , 3598:54, 3599:55},
    ts: ISODate("2013-10-16T22:00:00.000-0500")
}

相比上面的方案更进一步,从分钟到小时:

  • 每小时的数据都存储在一个文档中;
  • 数据采集操作基本是Update语句;
  • 更新最后一个时间点(第3599秒),需要3599次迭代(虽然是在同一个文档中)

进一步优化下:

shell
{
    segId: "I80_mile23",
    speed: {
        0:  {0:47, ..., 59:45},
        ...,
        59: {0:65, ... , 59:56}
    }
    ts: ISODate("2013-10-16T22:00:00.000-0500")
}
  • 用了嵌套的手法把秒级别的数据存储在小时数据里;
  • 数据采集操作基本是Update语句;
  • 更新最后一个时间点(第3599秒),需要59+59次迭代;

嵌套结构正是MongoDB的魅力所在,稍动脑筋把一维拆成二维,大幅度减少了迭代次数;

每个事件用一个独立的文档存储VS每分钟的信息用一个独立的文档存储

从写入上看:后者每次修改的数据量要小很多,并且在WiredTiger引擎下,同一个文档的修改一定时间窗口下是可以在内存中合并的;

从读取上看:查询一个小时的数据,前者需要返回3600个文档,而后者只需要返回60个文档,效率上的差异显而易见;

从索引上看:同样,因为稳定数量的大幅度减少,索引尺寸也是同比例降低的,并且segId,ts这样的冗余数据也会减少冗余。容量的降低意味着内存命中率的上升,也就是性能的提高;

每小时的信息用一个独立的文档存储VS每分钟的信息用一个独立的文档存储

从写入上看:因为WiredTiger是每分钟进行一次刷盘,所以每小时一个文档的方案,在这一个小时内要被反复的load到PageCache中,再刷盘;所以,综合来看后者相对更合理;

从读取上看:前者的数据信息量较大,正常的业务请求未必需要这么多的数据,有很大一部分是浪费的;

从索引上看:前者的索引更小,内存利用率更高;

总结

那么到底选择哪个方案更合理呢?从理论分析上可以看出,不管是小时存储,还是分钟存储,都是利用了MongoDB的信息聚合的能力。

  • 每小时的信息用一个独立的文档存储:设计上较极端,优势劣势都很明显;
  • 每分钟的信息用一个独立的文档存储:设计上较平衡,不会与业务期望偏差较大;

落实到现实的业务上,哪种是最优的?最好的解决方案就是根据自己的业务情况进行性能测试,以上的分析只是“理论”基础,给出“实践”的方向,但千万不可以此论断。

3. MongoDB调优

3.1 三大导致MongoDB性能不佳的原因

1) 慢查询

2) 阻塞等待

3)硬件资源不足

1,2通常是因为模型/索引设计不佳导致的

排查思路:按1-2-3依次排查

3.2 影响MongoDB性能的因素

https://www.processon.com/view/link/6239daa307912906f511b348

image-20250117153052120

3.3 MongoDB性能监控工具

Free Monitoring

从版本4.0开始,MongoDB为独立实例和复制集提供免费的云监控。免费监控提供有关部署的信息,包括:

  • 操作执行次数
  • 内存使用情况
  • CPU使用率
  • 操作数
shell
# 启用监控
db.enableFreeMonitoring()
# 禁止监控
db.disableFreeMonitoring()

image-20250117153111425

浏览器中访问Free Monitoring URL:

image-20250117153400062

mongostat

mongostat是MongoDB自带的监控工具,其可以提供数据库节点或者整个集群当前的状态视图。该功能的设计非常类似于Linux系统中的vmstat命令,可以呈现出实时的状态变化。不同的是,mongostat所监视的对象是数据库进程。mongostat常用于查看当前的QPS/内存使用/连接数,以及多个分片的压力分布。mongostat采用Go语言实现,其内部使用了db.serverStatus()命令,要求执行用户需具备clusterMonitor角色权限。

shell
mongostat -h 192.168.65.174 --port 28017 -ufox -pfox --authenticationDatabase=admin --discover -n 300 2

参数说明:

  • -h:指定监听的主机,分片集群模式下指定到一个mongos实例,也可以指定单个mongod,或者复制集的多个节点。
  • --port:接入的端口,如果不提供则默认为27017。
  • -u:接入用户名,等同于-user。
  • -p:接入密码,等同于-password。
  • --authenticationDatabase:鉴权数据库。
  • --discover:启用自动发现,可展示集群中所有分片节点的状态。
  • -n 300 2:表示输出300次,每次间隔2s。也可以不指定“-n 300”,此时会一直保持输出。

image-20250117153417114

指标说明

指标名说明
inserts每秒插入数
query每秒查询数
update每秒更新数
delete每秒删除数
getmore每秒getmore数
command每秒命令数,涵盖了内部的一些操作
%dirtyWiredTiger缓存中脏数据百分比
%usedWiredTiger 正在使用的缓存百分比
flushesWiredTiger执行CheckPoint的次数
vsize虚拟内存使用量
res物理内存使用量
qrw客户端读写等待队列数量,高并发时,一般队列值会升高
arw客户端读写活跃个数
netIn网络接收数据量
netOut网络发送数据量
conn当前连接数
set所属复制集名称
repl复制节点状态(主节点/二级节点……)
time时间戳

mongostat需要关注的指标主要有如下几个:

  • 插入、删除、修改、查询的速率是否产生较大波动,是否超出预期。
  • qrw、arw:队列是否较高,若长时间大于0则说明此时读写速度较慢。
  • conn:连接数是否太多。
  • dirty:百分比是否较高,若持续高于10%则说明磁盘I/O存在瓶颈。
  • netIn、netOut:是否超过网络带宽阈值。
  • repl:状态是否异常,如PRI、SEC、RTR为正常,若出现REC等异常值则需要修复。

使用交互模式

mongostat一般采用滚动式输出,即每一个间隔后的状态数据会被追加到控制台中。从MongoDB 3.4开始增加了--interactive选项,用来实现非滚动式的监视,非常方便。

shell
mongostat -h 192.168.65.174 --port 28017 -ufox -pfox --authenticationDatabase=admin --discover --interactive -n 2

image-20250117153439511

mongotop

mongotop命令可用于查看数据库的热点表,通过观察mongotop的输出,可以判定是哪些集合占用了大部分读写时间。mongotop与mongostat的实现原理类似,同样需要clusterMonitor角色权限。

shell
mongotop -h 192.168.65.174 --port=28017 -ufox -pfox --authenticationDatabase=admin

默认情况下,mongotop会持续地每秒输出当前的热点表

image-20250117153458627

指标说明

指标名说明
ns集合名称空间
total花费在该集合上的时长
read花费在该集合上的读操作时长
write花费在该集合上的写操作时长

mongotop通常需要关注的因素主要包括:

  • 热点表操作耗费时长是否过高。这里的时长是在一定的时间间隔内的统计值,它代表某个集合读写操作所耗费的时间总量。在业务高峰期时,核心表的读写操作一般比平时高一些,通过mongotop的输出可以对业务尖峰做出一些判断。
  • 是否存在非预期的热点表。一些慢操作导致的性能问题可以从mongotop的结果中体现出来

mongotop的统计周期、输出总量都是可以设定的

shell
#最多输出100次,每次间隔时间为2s
mongotop -h 192.168.65.174 --port=28017 -ufox -pfox --authenticationDatabase=admin -n 100 2

image-20250117153902542

Profiler模块

Profiler模块可以用来记录、分析MongoDB的详细操作日志。默认情况下该功能是关闭的,对某个业务库开启Profiler模块之后,符合条件的慢操作日志会被写入该库的system.profile集合中。Profiler的设计很像代码的日志功能,其提供了几种调试级别:

级别说明
0日志关闭,无任何输出
1部分开启,仅符合条件(时长大于slowms)的操作日志会被记录
2日志全开,所有的操作日志都被记录

对当前的数据库开启Profiler模块:

# 将level设置为2,此时所有的操作会被记录下来。
db.setProfilingLevel(2)
#检查是否生效
db.getProfilingStatus()

image-20250117153948313

  • slowms是慢操作的阈值,单位是毫秒;
  • sampleRate表示日志随机采样的比例,1.0则表示满足条件的全部输出。

如果希望只记录时长超过500ms的操作,则可以将level设置为1

shell
db.setProfilingLevel(1,500)

还可以进一步设置随机采样的比例

shell
db.setProfilingLevel(1,{slowms:500,sampleRate:0.5})

查看操作日志

开启Profiler模块之后,可以通过system.profile集合查看最近发生的操作日志

shell
db.system.profile.find().limit(5).sort({ts:-1}).pretty()

image-20250117154036134

这里需要关注的一些字段主要如下所示:

  • op:操作类型,描述增加、删除、修改、查询。
  • ns:名称空间,格式为{db}.{collection}。
  • Command:原始的命令文档。
  • Cursorid:游标ID。
  • numYield:操作数,大于0表示等待锁或者是磁盘I/O操作。
  • nreturned:返回条目数。
  • keysExamined:扫描索引条目数,如果比nreturned大出很多,则说明查询效率不高。docsExamined:扫描文档条目数,如果比nreturned大出很多,则说明查询效率不高。
  • locks:锁占用的情况。
  • storage:存储引擎层的执行信息。
  • responseLength:响应数据大小(字节数),一次性查询太多的数据会影响性能,可以使用limit、batchSize进行一些限制。
  • millis:命令执行的时长,单位是毫秒。
  • planSummary:查询计划的概要,如IXSCAN表示使用了索引扫描。
  • execStats:执行过程统计信息。
  • ts:命令执行的时间点。

根据这些字段,可以执行一些不同维度的查询。比如查看执行时长最大的10条操作记录

查看某个集合中的update操作日志

shell
db.system.profile.find().limit(10).sort({millis:-1}).pretty()

查看某个集合中的update操作日志

shell
db.system.profile.find({op:"update",ns:"shop.user"})

注意事项

  • system.profile是一个1MB的固定大小的集合,随着记录日志的增多,一些旧的记录会被滚动删除。
  • 在线上开启Profiler模块需要非常谨慎,这是因为其对MongoDB的性能影响比较大。建议按需部分开启,同时slowms的值不要设置太低。
  • sampleRate的默认值是1.0,该字段可以控制记录日志的命令数比例,但只有在MongoDB 4.0版本之后才支持。
  • Profiler模块的设置是内存级的,重启服务器后会自动恢复默认状态。

db.currentOp()

Profiler模块所记录的日志都是已经发生的事情,db.currentOp()命令则与此相反,它可以用来查看数据库当前正在执行的一些操作。想象一下,当数据库系统的CPU发生骤增时,我们最想做的无非是快速找到问题的根源,这时db.currentOp就派上用场了。

db.currentOp()读取的是当前数据库的命令快照,该命令可以返回许多有用的信息,比如:

  • 操作的运行时长,快速发现耗时漫长的低效扫描操作。
  • 执行计划信息,用于判断是否命中了索引,或者存在锁冲突的情况。
  • 操作ID、时间、客户端等信息,方便定位出产生慢操作的源头。

image-20250117154116732

image-20250117154127235

image-20250117154135613

对示例操作的解读如下:

(1)从ns、op字段获知,当前进行的操作正在对test.items集合执行update命令。

(2)command字段显示了其原始信息。其中,command.q和command.u分别展示了update的查询条件和更新操作。

(3)"planSummary":"COLLSCAN" 说明情况并不乐观,update没有利用索引而是正在全表扫描。

(4)microsecs_running:NumberLong(186070)表示操作运行了186ms,注意这里的单位是微秒。

优化方向:

  • value字段加上索引
  • 如果更新的数据集非常大,要避免大范围update操作,切分成小批量的操作

opid表示当前操作在数据库进程中的唯一编号。如果已经发现该操作正在导致数据库系统响应缓慢,则可以考虑将其“杀”死

shell
db.killOp(4001)

db.currentOp默认输出当前系统中全部活跃的操作,由于返回的结果较多,我们可以指定一些过滤条件:

  • 查看等待锁的增加、删除、修改、查询操作
shell
db.currentOp({
    waitingForLock:true,
    $or:[
        {op:{$in:["insert","update","remove"]}},
        {"query.findandmodify":{$exists:true}}
    ]
})
  • 查看执行时间超过1s的操作
shell
db.currentOp({
    secs_running:{$gt:1}
})
  • 查看test数据库中的操作
shell
db.currentOp({
    ns:/test/
})

currentOp命令输出说明

  • currentOp.type:操作类型,可以是op、idleSession、idleCursor的一种,一般的操作信息以op表示。其为MongoDB 4.2版本新增功能。
  • currentOp.host:主机的名称。currentOp.desc:连接描述,包含connectionId。currentOp.connectionId:客户端连接的标识符。currentOp.client:客户端主机和端口。currentOp.appName:应用名称,一般是描述客户端类型。
  • currentOp.clientMetadata:关于客户端的附加信息,可以包含驱动的版本。currentOp.currentOpTime:操作的开始时间。MongoDB 3.6版本新增功能。
  • currentOp.lsid:会话标识符。MongoDB 3.6版本新增功能。
  • currentOp.opid:操作的标志编号。
  • currentOp.active:操作是否活跃。如果是空闲状态则为false。
  • currentOp.secs_running:操作持续时间(以秒为单位)。
  • currentOp.microsecs_running:操作持续时间(以微秒为单位)。
  • currentOp.op:标识操作类型的字符串。可能的值是:"none" "update" "insert""query""command" "getmore" "remove" "killcursors"。其中,command操作包括大多数命令,如createIndexes和findAndModify。
  • currentOp.ns:操作目标的集合命名空间。
  • currentOp.command:操作的完整命令对象的文档。如果文档大小超过1KB,则会使用一种$truncate形式表示。
  • currentOp.planSummary:查询计划的概要信息。
  • currentOp.locks:当前操作持有锁的类型和模式。
  • currentOp.waitingForLock:是否正在等待锁。
  • currentOp.numYields:当前操作执行yield(让步)的次数。一些锁互斥或者磁盘I/O读取都会导致该值大于0。
  • currentOp.lockStats:当前操作持有锁的统计。
  • currentOp.lockStats.acquireCount:操作以指定模式获取锁的次数。
  • currentOp.lockStats.acquireWaitCount:操作获取锁等待的次数,等待是因为锁处于冲突模式。acquireWaitCount小于或等于acquireCount。
  • currentOp.lockStats.timeAcquiringMicros:操作为了获取锁所花费的累积时间(以微秒为单位)。timeAcquiringMicros除以acquireWaitCount可估算出平均锁等待时间。
  • currentOp.lockStats.deadlockCount:在等待锁获取时,操作遇到死锁的次数。

注意事项

  • db.currentOp返回的是数据库命令的瞬时状态,因此,如果数据库压力不大,则通常只会返回极少的结果。
  • 如果启用了复制集,那么currentOp还会返回一些复制的内部操作(针对local.oplog.rs),需要做一些筛选。
  • db.currentOp的结果是一个BSON文档,如果大小超过16MB,则会被压缩。可以使用聚合操作$currentOp获得完整的结果。

3.4 性能问题排查参考案例

记一次 MongoDB 占用 CPU 过高问题的排查
MongoDB线上案例:一个参数提升16倍写入速度

4. change stream实战

4.1 什么是 Chang Streams

Change Stream指数据的变化事件流,MongoDB从3.6版本开始提供订阅数据变更的功能。

Change Stream 是 MongoDB 用于实现变更追踪的解决方案,类似于关系数据库的触发器,但原理不完全相同:

image-20250117154320888

4.2 Change Stream 的实现原理

Change Stream 是基于 oplog 实现的,提供推送实时增量的推送功能。它在 oplog 上开启一个 tailable cursor 来追踪所有复制集上的变更操作,最终调用应用中定义的回调函数。

被追踪的变更事件主要包括:

  • insert/update/delete:插入、更新、删除;
  • drop:集合被删除;
  • rename:集合被重命名;
  • dropDatabase:数据库被删除;
  • invalidate:drop/rename/dropDatabase 将导致 invalidate 被触发, 并关闭 change stream;

从MongoDB 6.0开始,change stream支持DDL事件的更改通知,如createIndexes和dropIndexes事件。

image-20250117154329630

如果只对某些类型的变更事件感兴趣,可以使用使用聚合管道的过滤步骤过滤事件:

shell
var cs = db.user.watch([{
    $match:{operationType:{$in:["insert","delete"]}}
}])

db.watch()语法: https://www.mongodb.com/docs/manual/reference/method/db.watch/#example

Change Stream会采用 "readConcern:majority"这样的一致性级别,保证写入的变更不会被回滚。因此:

  • 未开启 majority readConcern 的集群无法使用 Change Stream;
  • 当集群无法满足 {w: “majority”} 时,不会触发 Change Stream(例如 PSA 架构 中的 S 因故障宕机)。

MongoShell测试

窗口1

shell
db.user.watch([],{maxAwaitTimeMS:1000000})

窗口2

shell
db.user.insert({name:"xxxx"})

image-20250117154422132

变更事件字段说明

image-20250117154428929

4.3 Change Stream 故障恢复

假设在一系列写入操作的过程中,订阅 Change Stream 的应用在接收到“写3”之后 于 t0 时刻崩溃,重启后后续的变更怎么办?

image-20250117154435434

想要从上次中断的地方继续获取变更流,只需要保留上次变更通知中的 _id 即可。 Change Stream 回调所返回的的数据带有 _id,这个 _id 可以用于断点恢复。例如:

shell
var cs = db.collection.watch([], {resumeAfter: <_id>})

即可从上一条通知中断处继续获取后续的变更通知。

4.4 使用场景

  • 监控

用户需要及时获取变更信息(例如账户相关的表),ChangeStreams 可以提供监控功能,一旦相关的表信息发生变更,就会将变更的消息实时推送出去。

  • 分析平台

例如需要基于增量去分析用户的一些行为,可以基于 ChangeStreams 把数据拉出来,推到下游的计算平台, 比如 类似 Flink、Spark 等计算平台等等。

  • 数据同步

基于 ChangeStreams,用户可以搭建额外的 MongoDB 集群,这个集群是从原端的 MongoDB 拉取过来的, 那么这个集群可以做一个热备份,假如源端集群发生 网络不通等等之类的变故,备集群就可以接管服务。 还可以做一个冷备份,如用户基于 ChangeStreams 把数据同步到文件,万一源端数据库发生不可服务, 就可以从文件里恢复出完整的 MongoDB 数据库, 继续提供服务。(当然,此处还需要借助定期全量备份来一同完成恢复) 另外数据同步它不仅仅局限于同一地域,可以跨地域,从北京到上海甚至从中国到美国等等。

  • 消息推送

假如用户想实时了解公交车的信息,那么公交车的位置每次变动,都实时推送变更的信息给想了解的用户,用户能够实时收到公交车变更的数据,非常便捷实用。

注意事项

  • Change Stream 依赖于 oplog,因此中断时间不可超过 oplog 回收的最大时间窗;
  • 在执行 update 操作时,如果只更新了部分数据,那么 Change Stream 通知的也是增量部分;
  • 删除数据时通知的仅是删除数据的 _id。

4.5 Spring Boot整合Chang Stream

引入依赖

xml
<!--spring data mongodb-->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>

配置yml

yml
spring:
  data:
    mongodb:
      uri: mongodb://fox:fox@192.168.65.174:28017,192.168.65.174:28018,192.168.65.174:28019/test?authSource=admin&replicaSet=rs0

配置 mongo监听器的容器MessageListenerContainer,spring启动时会自动启动监听的任务用于接收changestream

java
@Configuration
public class MongodbConfig {

    @Bean
    MessageListenerContainer messageListenerContainer(MongoTemplate template, DocumentMessageListener documentMessageListener) {

        Executor executor = Executors.newFixedThreadPool(5);

        MessageListenerContainer messageListenerContainer = new DefaultMessageListenerContainer(template, executor) {
            @Override
            public boolean isAutoStartup() {
                return true;
            }
        };

        ChangeStreamRequest<Document> request = ChangeStreamRequest.builder(documentMessageListener)
                .collection("user")  //需要监听的集合名
                //过滤需要监听的操作类型,可以根据需求指定过滤条件
                .filter(Aggregation.newAggregation(Aggregation.match(
                        Criteria.where("operationType").in("insert", "update", "delete"))))
                //不设置时,文档更新时,只会发送变更字段的信息,设置UPDATE_LOOKUP会返回文档的全部信息
                .fullDocumentLookup(FullDocument.UPDATE_LOOKUP)
                .build();
        messageListenerContainer.register(request, Document.class);

        return messageListenerContainer;
    }
}

配置mongo监听器,用于接收数据库的变更信息

java
@Component
public class DocumentMessageListener<S, T> implements MessageListener<S, T> {

   @Override
   public void onMessage(Message<S, T> message) {

      System.out.println(String.format("Received Message in collection %s.\n\trawsource: %s\n\tconverted: %s",
            message.getProperties().getCollectionName(), message.getRaw(), message.getBody()));


   }
}

测试

mongo shell插入一条文档

image-20250117154548010

控制台输出

image-20250117154557273

Released under the MIT License.